K. Li, Y. Li, L. Li and S. Lanteri
Surrogate modeling of time-domain electromagnetic wave propagation via dynamic mode decomposition and radial basis function
J. Comput. Phys., Vol. 491, pp. 112354 (2023)
X.-F. He, L. Li, S. Lanteri and K. Li
Model order reduction for parameterized electromagnetic problems using matrix decomposition and deep neural networks
J. Comput. Appl. Math., Vol. 431, pp. 115271 (2023)
X.-F. He, L. Li, S. Lanteri and K. Li
Reduced order modeling for parameterized electromagnetic simulation based on tensor decomposition
IEEE J. Multiscale Multiphysics Comput. Tech., Vol. 8, pp. 296-305 (2023)
K. Li, T.-Z. Huang, L. Li and S. Lanteri
Simulation of the interaction of light with 3-D metallic nanostructures using a proper orthogonal decomposition-Galerkin
reduced-order discontinuous Galerkin time-domain method
Numer. Methods Partial Differ. Eq., Vol. 39, NO. 2, pp. 932-954 (2023)
K. Li, T.-Z. Huang, L. Li, Y. Zhao and S. Lanteri
A non-intrusive model order reduction approach for parameterized time-domain Maxwell's equations
Discrete Contin. Dyn. Syst. - B, Vol. 28, No. 1, pp. 449-473 (2022)
K. Li, T.-Z. Huang, L. Li and S. Lanteri
Non-intrusive reduced-order modeling of parameterized electromagnetic scattering problems using cubic spline interpolation
J. Sci. Comp., Vol. 87, Art. no. 52 (2021)
K. Li, T.-Z. Huang, L. Li and S. Lanteri
POD-based model order reduction with an adaptive snapshot selection for
a discontinuous Galerkin approximation of the time-domain Maxwell's equations
J. Comput. Phys., Vol. 396, pp. 106-128 (2019)
K. Li, T.-Z. Huang, L. Li and S. Lanteri
A reduced-order discontinuous Galerkin method based on a Krylov
subspace technique in nanophotonics
Appl. Math. Comput., Vol. 358, pp. 128-145 (2019)
K. Li, T.-Z. Huang, L. Li and S. Lanteri
A reduced-order DG formulation based on POD method for the time-domain Maxwell’s
equations in dispersive media
J. Comput. Appl. Math., Vol. 336, pp. 249-266 (2018)
K. Li, T.-Z. Huang, L. Li, S. Lanteri, L. Xu and B. Li
A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation
IEEE Trans. Ant. Propag., Vol. 66, No. 1, pp. 242-254 (2018)
A. Iollo, S. Lanteri and J.-A. Désidéri
Stability properties of POD-Galerkin
approximations for the compressible Navier-Stokes equations
Theoretical Comput. Fluid Dyn. Vol. 13, pp. 377-396 (2000)
A. Iollo, A. Dervieux, J.-A. Désidéri and S. Lanteri
Two stable POD-based approximations to the Navier-Stokes equations
Computing and Visualization in Science, Vol. 3, pp. 61-66 (2000)